The Critical Role of Markets in Climate Change Adaptation

by

Sarah Anderson, UCSB; Terry L. Anderson, Hoover; Alice C. Hill, Hoover; Matthew E. Kahn, USC and NBER; Howard Kunreuther, U Penn and NBER; Gary D. Libecap, UCSB and NBER; Hari Mantripragada, Pitt; Pierre Mérel, UCD; Andrew J. Plantinga, UCSB; and V. Kerry Smith, ASU and NBER

Abstract

Markets, especially land markets, can facilitate climate change adaptation through price signals. A review of research reveals that urban, coastal, and agricultural land markets provide effective signals of the emerging costs of climate change. These signals encourage adjustments by both private owners and by policy officials in taking preemptive action to reduce costs. In agriculture, they promote consideration of new cropping and tillage practices, seed types, timing, and location of production. They also stimulate use of new irrigation technologies. In urban areas, they motivate new housing construction, elevation, and location away from harm. They channel more efficient use of water and its application to parks and other green areas to make urban settings more desirable with higher temperatures. Related water markets play a similar role in adjusting water use and reallocation. To be effective, however, markets must reflect multiple traders and prices must be free to adjust. Where these conditions are not met, market signals will be inhibited and market-driven adaptation will be reduced. Because public policy is driven by constituent demands, it may not be a remedy. The evidence of the National Flood Insurance Program and federal wildfire response illustrates how politically difficult it may be to adjust programs to be more adaptive.

Introduction: Adaptation and Climate Change

“Climate change, once considered an issue for a distant future has moved firmly into the present” (Melillo, et al, 2014). Humanity must find expeditious ways to deal with its effects, including more extreme heat and precipitation events, sea-level rise, higher intensity storms, and extended drought. The most widely discussed option to address anthropogenic climate change is through mitigation. Policies to reduce emissions include taxing carbon, trading carbon credits, and displacing conventional sources of energy by subsidizing renewable technologies. To be globally effective, these mitigation options require international collective action that has been difficult to attain (Libecap, 2014). Moreover, even with full implementation of cross-national
mitigation options, such as through the Paris Agreement of 2015, recent estimates suggest that the temperature targets will be missed unless emissions are more sharply reduced.\(^1\)

Ambitious mitigation efforts undertaken now do not alter the fact that humans are committed to some amount of climate change as the result of past emissions (Mauritsen and Pincus, 2017). As such, adaptation will necessarily be part of the response to climate change. The Intergovernmental Panel on Climate Change (IPCC) defines adaptation as any action that can “moderate or avoid harm or exploit beneficial opportunities” associated with climate change.\(^2\) Mendelsohn (2000) distinguishes between adaptation that generates positive benefits (the IPCC definition) and “efficient adaptation,” which produces positive benefits net of costs. Our focus here is on efficient adaptation.

Adaptation has some distinctive advantages. In addition to adaptation undertaken by private individuals or firms, adaptation policies can be implemented and adjusted unilaterally by countries without requiring international coordination. A country’s adaptive responses offer opportunities for learning. They can serve as templates for use elsewhere. Social scientists have published peer-reviewed scholarship highlighting successful examples of adaptation in North America (Filho and Keenan, 2017), central Europe (Rüter, et al, 2014), and South America (Krellenberg and Barth, 2014). There also are examples of maladaptation (inefficient adaptation) in the Maldives, Ethiopia, South Africa, and Bangladesh (Magnan, et al, 2016).

Whether and to what extent humans will adapt to a changing climate depends partially on whether they receive sufficient advance information about the possible impacts of new weather patterns resulting from this change. Moreover, if climate change affects goods traded in markets, the prices of these goods will change, sending signals to owners, traders, and policy makers of

the anticipated impacts. These incentives create opportunities to respond and with them identify potential benefits from adaptation. A market does not require consensus on climate change outcomes, and indeed is most effective when there are multiple and perhaps, conflicting, views. Accordingly, market prices will incorporate new information as it unfolds. In this manner, a market can reveal new evidence regarding the anticipated effects of a changing climate (Grossman and Stiglitz, 1976). This knowledge, in turn, becomes valuable in responding in a timely and cost-effective manner. On the other hand, policies that inhibit trade or that fix prices can, as a result, undermine this information revelation process and impede adaptation.

To explore the conditions under which adaptation can take place, a workshop on the potential for market-based responses to climate change involving 10 economists, political scientists, civil engineers, and policy scholars was held at the Hoover Institution, Stanford University, November 7-8, 2017. Building upon the contributions presented at the workshop and the discussions that ensued, this paper explains how market signals encourage adaptation through land markets. It also identifies impediments to critical market signals, provides related policy recommendations, and points to promising new technologies.\(^3\) The important role for markets in climate change adaptation was first emphasized by Mendelsohn (2006). Our paper covers some of the same sectors (agriculture, water) as in this earlier contribution, but stresses the information

about climate change transmitted through land markets. A broader survey of the literature on the economics of adaptation is provided by Chambwera et al. (2014).

Market Signals Can Stimulate Adaptation

Agricultural and Urban Land Markets

Land is perhaps the foremost resource signaling climate change. Because land is a durable asset and a primary input in agricultural production, urban housing, and commercial development, climate change will affect its productivity and desirability. If land is traded in markets, these effects will be capitalized into land values, thus signaling anticipated impacts and the potential benefits of adaptation. As land is generally fixed in supply, the value of land derives from changes in demand. The demand for land in a variety of uses reflects both current and expected future returns, monetary or non-monetary, to the goods and services it provides (Lobell, et al, 2011). Climate change may affect land productivity through temperature variation, access to water and rainfall (Jaeger, et al 2017), and desirability for human habitation (Albouy, et al, 2016). New risk assessments recognize that climate change affects these attributes and as a result land prices, thereby motivating landowners to adjust land use (Severen et al. 2018).

Identifying changes in land market prices that are tied to new climate change risks is challenging statistically because it is difficult to know if a given change in risk is due to climate change or to background variation in climate. Even so, a large quantitative literature exists on how variables affecting productivity and desirability influence land values (Plantinga, 2017). The observed price patterns in response to long term weather patterns provide evidence on how land markets likely will respond to evolving climate change information (Mendelsohn et al. 1994; Schlenker et al. 2005; McWilliams and Moore, 2017).
For example, empirical evidence reveals how uncertainty over future land rents and changes in the incidence of natural disasters influences both agricultural and urban land values (Plantinga et al., 2002; Bin and Landry, 2013). There also is strong evidence that climate change forecasts are capitalized into farmland prices and the effect is larger where there is greater awareness of future climate change risk as revealed in public opinion surveys (Severen, et al., 2018). Jaeger et al, (2017) find that farm land rents, crop choice, and irrigation decisions in the Willamette Valley of Oregon vary with temperature and precipitation. Landowners make adjustments to higher temperatures and less precipitation by changing crops and irrigation practices as well as by shifting across forest, agriculture, and urban land uses. Additionally, vineyard sales data in California and Oregon analyzed by Beasley and Cross (2017) indicate that climate forecasts raise land values in cool, but not in warm areas. The finding suggests that the market is anticipating that already-warm vineyard areas will become less productive in the future as temperatures increase and wine production will gradually move to cooler regions.

Absent adaptive responses in agriculture, recent empirical studies indicate large, negative short-run effects on crop yields, channeled principally through increases in crop exposure to extreme heat and reduced access to water (Fisher et al., 2012; Lobell et al., 2011; Porter et al., 2014). Holding everything constant, by the end of the century area-weighted average yields of corn, soybeans, and cotton could decrease by 63-82%, leading to a decline in U.S. farmland prices between 27% and 69% (Schlenker and Roberts 2009, Schlenker et al, 2006). Such productivity declines would be gradually reflected in land market prices as production moves to less affected areas and crops.

Adaptation via land market signals and related agricultural adjustments, however, could modify these negative predictions substantially. Mendelsohn et al. (1994) provide the seminal
analysis of climate change effects on land markets. Using cross-sectional data for the U.S., the authors measures the effects of long-run weather averages on county-level farmland values. By comparing farmland values in locations with different climates, the “Ricardian” approach measures how farmers have adapted to different climate conditions. Simulations of changes in temperature and precipitation indicate considerable potential for adaptation to reduce effects of climate change. Ricardian studies have been replicated in many other locations with similar results (e.g., Kurukulasuriya et al. 2011).

Adaptation could occur through geographic shifts in farm production as well as shifts in crop timing and crop and livestock mixes. Warming would likely increase the useful growing season in some areas, often limited by spring and fall frost events, which could allow farmers to adjust planting times to reduce heat exposure during summer months or allow multiple cropping (Seifert and Lobell, 2015). Earlier planting by around two weeks could reduce US corn yield losses due to warming by 44% (Ortiz-Bobea and Just, 2013). Deryng et al (2011) use global crop models for corn, soybeans, and spring wheat and find that shifts in planting dates and cultivation could more than compensate for yield losses induced by climate change in temperate regions. Farmers can adapt to climate change by adjusting crop mixes (Kurukulasuriya and Mendelsohn 2008, Seo and Mendelsohn 2008b, Wang et al 2010), switching among types of livestock (Seo and Mendelsohn 2008a), as well as shifting between crops and livestock (Seo and Mendelsohn 2008c).

Research and development is also an important source of adaptation. New hybrid corn varieties that were both higher-yielding and more robust to heat exposure increased yields markedly following the Dust Bowl years until about 1960 (Roberts and Schlenker, 2011).

4 Mendelsohn et al. (1994) was the catalyst for a large and growing literature on the effects of climate change on agriculture. See Auffhammer and Schlenker (2014) for a recent review.
Further evidence of climate adaptation can be seen during the westward expansion of American agriculture in the 19th century when farmers introduced crop varieties suited to more arid and both colder and warmer climates (Olmstead and Rhode, 2011).

Absent any adaptation, Gammans et al. (2017) predict a 21.0% decline in winter wheat yield, a 17.3% decline in winter barley yield, and a 33.6% decline in spring barley yield for French agriculture by the end of the century. These predictions, however, hold technology and cropping practices constant, and do not account for yield effects of CO$_2$ fertilization (Kimball 1983). If farmers adjust, then the costs can be reduced. In fact, French farmers appear to have partially adjusted by increasing the share of winter barley relative to spring barley, as winter barley is more resistant to higher temperatures. Continuing technology trends in these crops would counterbalance most of the negative effects of climate change, even without accounting for climate-change-induced research and development.

Other empirical evidence also indicates that farmers worldwide are responsive to changes in weather risk. For instance, panel data from 1956-1990 analyzed by Taraz (2018) reveal that Indian farmers adapt irrigation investments and cropping patterns to shifting Monsoon regimes. Producers in Israel substitute capital, primarily irrigation technology, for a poorer climatic conditions (Fleischer, et al, 2011). Using panel data from 1982-2010, across wet and dry years in parts of Colorado dependent upon precipitation, Manning et al (2011) found that farmers have responded to expected surface water shortages by reducing acres of corn planted and concentrating the application of scarce water on productive areas to protect yields. The authors conclude that failure to account for such behavioral adaptive responses would overstate the negative effects of climate change by 17%.
Albouy et al, (2016) examine how US housing markets respond to climate amenities, such as temperature, precipitation, humidity, and sunshine, and then explore how those markets would respond to future climatic conditions and different amenities. Changes in climate amenities reduce welfare under business-as-usual climate predictions, but these losses are reduced somewhat by migration responses. Climatic effects on housing supply and demand are capitalized into urban land values (Kahn, 2017; Plantinga, 2017). Bin and Landry (2013) generally find that flood risk, often associated with climate change, is reflected in housing prices. Buyers’ and sellers’ risk perceptions can differ when hazard experiences are remote and risk information is incomplete, but converge in the immediate period after a flood. Risk premiums, however, appear to decline over time in the absence of any new flood event.

Water Markets

Access to water is critical for both agricultural productivity and urban living and, hence, land values (Libecap, 2017). It will affect the ability of land owners to make the kinds of adjustments needed for agriculture and urban development. Climate change can be expected to affect both the supply and demand for freshwater though higher temperatures, greater incidence of drought, and increased use of irrigation. There also will be greater reliance upon urban green spaces, landscaping, and water for recreation as well as environmental protection (Barnett, et al. 2005 (Rosenburg, et al. 1999; Barnett, et al, 2014; Ranjan, et al. 2006; Treidel, 2012; Woodruff, 2016). New supply and demand conditions require conservation, greater storage in surface reservoirs and groundwater basins, as well as supply augmentation, such as desalinization, along with reallocation from existing to new uses.

Where they exist, water markets can be a critical factor in facilitating adaptation in land markets to climate change. They can encourage reallocation of water to its highest valued uses,
reflecting new demands, compensating owners of water rights, and importantly, generating information about alternative values. Information may be the single greatest contribution of water markets because successful reallocation requires that water be moved to higher-valued uses and effective supply support from water supply organizations requires weighing the costs and benefits of different options. Absent market trades, such information is not available. As suggested below, the potential of water markets in contributing to adaptation has not been “tapped.”

The dominant policy response to drought, which will increase with climate change, has been government-mandated reductions in water consumption. For example, during the recent drought in California, the Governor called for 25% reductions in urban areas, along with other conservation programs. These uniform cutbacks, however, do not take into account different values of water use that otherwise would dictate differential reductions, and there can be important long-term social losses. Mandated decreases do not generate the information signals provided by markets, and there are few options for private reallocation to sustain water in critical areas. Uniform cutbacks also are not equitable since low-income consumers consume less water per capita than do high-income consumers. In contrast, shifting water prices that reflect new supply and demand conditions promote voluntary adaptation.

Further, water markets can be used to protect minimum stream flows for environmental uses. Such acquisitions are likely more durable and consistent with the multiple values for how water is used than are government-mandated reallocations. In the latter case, water rights holders are not compensated; rights are made less secure, inhibiting water market development; and agency officials as well as lobby advocates do not have to assess the economic tradeoffs

inherent in any regulatory reallocation. All of these factors suggest costly conflict and political insecurity that would undermine any conservation “set-asides.” Overall, markets help answer questions about the tradeoffs that necessarily arise among irrigation, urban, industrial, and environmental uses as supplies tighten and demands increase.

Water markets exist in the fast-growing western United States, a region predicted to be especially vulnerable to climate change due to its reliance upon snow-melt (Ojha et al. 2015). The region has an established water rights system that allows for water to be traded. Even so, water markets are not as active as they could be. Only about 2%- 4% of annual water consumption is traded, and there are large potential gains from reallocation from agriculture where 60-80% of water is in use (Brewer, et al, 2008). Existing water prices reveal the gains from trade. For example, in Nevada’s Reno/Truckee Basin, the median price of agriculture-to-urban water rights sales between 2002 and 2009 was $17,685/acre-foot (an acre-foot = 325,851 gallons, about enough to meet the needs of four people for a year), whereas for agriculture-to-agriculture water rights sales, the median price was $1,500/acre-foot, a difference in value of over 12 times (Libecap 2011). Despite these differences, a major reason for limited market trading during drought is a costly, slow, and resistant regulatory process where multiple parties can intervene to protest water trades (Culp, et al, 2014).

The information provided by access to the pricing information from water trades can serve is essential for water supply organizations as they tackle climate change. Further, required water supply estimates conducted by urban water supply organizations often hold existing demand constant, but that would not be the case if urban water were priced more effectively. Many urban water suppliers use flat rates that do not encourage conservation. A few cities,

http://www.circleofblue.org/waterpricing/
however, use steep tiered water pricing, whereby low levels of consumption are priced near zero, but rates rapidly increase as consumption rises. Tucson, Arizona uses such tiered pricing, whereas similar cities near Phoenix use low flat rate or modest tiered pricing systems. Per-capita consumption in Tucson is about 25% less than in Phoenix. Such pricing policies can be designed to be both equitable and effective in encouraging conservation. It is possible to protect essential family water consumption with minimal or “lifeline” prices, allowing prices for water use beyond that threshold to rise.

Policy Flexibility Can Encourage Adaptation

Adaptation requires access to the latest information on the possible timing, intensity, and location of climate change effects. Regulations that restrict market trades or reduce the incentive to engage in them limit the potential of land markets to promote adaptation to climate change. The evidence suggests that farmers can be responsive across a variety of margins through shifts in cropping, timing, cultivation, water use, and location. Their incentives to do so, however, can be reduced by subsidized crop insurance and unpriced irrigation water that reduces the private costs of lower productivity due to weather risk (Wahl, 1989; Annan and Schlenker, 2015). Restrictions on land use and cropping adjustments, such as those adopted under the Conservation Reserve Program, also can limit flexible responses (Antle and Capalbo, 2010). Further, the failure to define property rights to groundwater leaves it vulnerable to over extraction as farmers turn to groundwater during drought (Ayres, et al, 2018). Government and private research and development promoted by strengthened intellectual property policies also are essential for discovery of new production techniques, capital, and crop varieties.

Land use regulations that restrict market trades and subsidies that artificially encourage particular types of uses can distort the information released and make responses to new information less flexible. For instance, zoning and growth controls are often motivated by desirable objectives. They seek to influence urban development and to preserve open space. Nevertheless, these controls constrain land market transactions and hence, distort property prices. Accordingly, where in place, zoning restrictions can limit the generation of useful price signals and the associated incentives for adaptive land use in light of new climate change forecasts (Glaeser, et al, 2005; Dempsey and Plantinga, 2013; Grout, et al, 2011). Accordingly, zoning rules may need to be made more flexible in order to encourage adaptive responses to climate change. Zoning maps can be redrawn to facilitate changes in land use in response to an increased threat of flooding or coastal erosion. Other land use regulations that allow for flexible adaptation, such as tradable development rights (TDRs), could be implemented more broadly. With TDRs, landowners in one area can sell development rights that permit land to be developed in another area. If the profitability of development in the receiving area were to be increased by climate change, prices for development rights would adjust and provide the correct incentives to landowners in the sending area to preserve land and for development to take place in the receiving area.

We focus, below, on flood insurance and wildfire suppression activities, which illustrate the problems at hand for land markets. They subsidize existing land uses and undermine the ability of market trades to convey information about the need to adapt to climate change.

Distortions in Flood Insurance Markets and Wildfire Suppression Policies

The National Flood Insurance Program (NFIP), enacted in 1968, provides federal subsidies to some property owners to make flood insurance rates affordable, rather than to have
them reflect the risk of floods in particular locations. Under the NFIP homeowners whose houses satisfy specific criteria can be insured against flood damage at rates that are below what actuarial principles would imply. While there are provisions encouraging rate modifications, based on the base flood elevation level, in general these rates do not encourage property owners to sufficiently invest in flood-proofing measures, including moving from harm. The best signal of the changing risks in flood-prone regions is through pricing of insurance at actuarial rates, reflecting risk and adjusting them as those risks change with anticipated climate change.

Nevertheless, the current NFIP policies encourages rebuilding in flood-prone areas. For example, the Natural Resources Defense Council reported that between 1978 and 2015 the NFIP paid $5.5 billion to repair and rebuild more than 30,000 of the “severe repetitive loss properties” in response to flood or hurricane damage. “These homes and businesses have been rebuilt multiple times in the wake of floods or hurricanes… While they represent just 0.6 percent of the 5.1 million properties insured through the NFIP, they account for a disproportionate 9.6 percent of all damages paid, as of 2015.”

The justification for current insurance pricing policies is to maintain rates that are “affordable” so as to increase the take-up of insurance in areas subject to flood risk. Kahn and Smith (2017) use information available from mortgage applications from 1989 to 2014 due to mandates of the Home Mortgage Disclosure Act (HMDA) and federal tax returns from 2007 to 2014 to analyze the incomes of property owners who are potential recipients of NFID-subsidized rates. Two different spatial scales are used to evaluate the income levels of households living along the coast in comparison to those who live in interior locations in each of the five Gulf Coast states. Comparing

8 There have been recent changes to the NFIP. The Biggert-Waters Flood Insurance Reform Act of 2012 phased out subsidies for buildings that pre-dated flood insurance rate maps (pre-FIRM) and grandfathering of rates based on previous editions of flood maps. However, these changes were eliminated or their implementation was slowed down under the Homeowner Flood Insurance Affordability Act of 2014.
real median income for coastal counties to the same measure for interior counties, they find
households in coastal areas generally have higher real median incomes and this persists over the full
25-year period.

Kahn and Smith also investigate the same question computing median income for shoreline
zip codes in comparison to the adjacent interior zip codes. For Florida and Texas, the pattern is
maintained, and the differences are statistically significant. For Alabama and Mississippi, the ranking
of median income is maintained, but the differences in median incomes are not consistently
significant. At the zip code level in Louisiana the ordering reverses, but this arises due to the
locations of coastal wetlands (Coastal Protection and Restoration Authority of Louisiana 2017,
Couvillion et al. 2011, The Data Center 2017). Using Internal Revenue Service (IRS) data on income
distributions for those households claiming a mortgage interest deduction, median incomes estimated
at the zip code level confirm the earlier HMDA results for Florida. Thus, Kahn and Smith find that
NFIP pricing policy is both distorting risk signals and offering subsidized rates to higher-income
households. The Congressional Budget Office’s (2017) analysis of the NFIP’s complex system
of subsidized and cross-subsidized rates implies that 85% of the policies in the highest-risk
coastal areas are below what would be implied by actuarial rates for the flood insurance rate
maps associated with these areas (Congressional Budget Office 2017).

Affordability in this context has been interpreted as providing insurance at rates below
actuarial levels for those living in high-risk coastal areas. The size of the subsidy depends on
when a home was built in relation to the most recent flood maps; whether communities are
participating in public flood-risk information and mitigation programs; and other factors. It does
not require an income threshold for eligibility. As a result, preferential treatments are capitalized
into home values, making the prospects of dramatic changes difficult, because homeowners
would then experience significant losses with any policy change.
A better signal of the changing risks in flood-prone regions is through risk-based pricing of insurance. The impact of both subsidizing higher-property values in coastal zones as well as lowering incentives to make adjustments is further revealed by Hill and Kakenmaster (2017) who examine Miami Beach, Florida and Norfolk, Virginia. Both communities underinvest in private and public adaptation to sea-level rise. Of the two communities, Miami Beach has much higher land values, supported in part by underpricing flood risk. Outdated flood maps do not reflect future hazards and in both areas there is investment in new development driven by tax subsidies.

The lack of household preparation for high-cost, but low-probability events, such as major flood and wildfire disasters is explored by Kunreuther (2018a, 2018b). Individuals exhibit a set of systemic biases such as myopia (focusing on short-time horizons when appraising protective measures), optimism (underestimating the likelihood of a loss before it occurs) and simplification (focusing on the low probability prior to the event and treating it as below their threshold level of concern). To encourage individuals to purchase insurance and invest in protective measures prior to a disaster, Meyer and Kunreuther (2017) recommend a behavioral risk audit that uses the principles of choice architecture coupled with economic incentives.

These individual biases, including attention to low-probability, high-cost events only in the short-term after they are experienced, also result in government investment that is maladaptive (Anderson, et al. 2018). Wibbenmeyer, et al. (2018) report that governments allocate more fire prevention resources to communities that have experienced a recent wildfire than to otherwise similar communities that have not experienced a fire, resulting in misallocation of resources to communities that likely have a lower risk of wildfire. Similarly, historical government responses to flooding have included construction of infrastructure such as levees that
have worsened subsequent flooding downstream (Day et al. 2007, Pinter 2008, Kundzewicz, et al, 2013). Accordingly, for disasters such as floods and wildfires that are likely to increase with climate change, maladaptation will increase costs of climate related impacts on them.

The Options for Policy Reform Limited by Salience, Myopic Voting, and the Political Response.

The higher private costs of more stringent building standards, wildfire fuel reduction, actuarially-fair insurance rates and movement away from hazards receive push back from constituents who desire to maintain or expand existing programs. Compelled by the salience-driven demands and myopic voting of their constituents, politicians respond by limiting policy reform and emphasizing disaster recovery rather than preparedness or adaptation (Healy and Malhotra 2009). By distorting prices, reacting to immediate past events, and subsidizing high-income households, policies like the NFIP and government wildfire policies that encourage resident location at the forest interface constrain effective adaptation to climate change.

Conclusion: Adaptation through Market Signals

Because land is relatively fixed in supply, demand shifts due to changes in climate change risk assessments, new assessments of agricultural productivity, and alteration of its desirability for human habitation are reflected in changing land values. Further, because land is a long-lived asset, these new valuations, even if they are expected to occur in the future, are capitalized into land prices. For this reason, urban, coastal, and agricultural land markets provide effective signals of the emerging costs of climate change. These signals in turn, encourage adjustments by both private owners and by policy officials in taking preemptive action to reduce climate change costs. In agriculture, they promote consideration of new

9 In contrast, other market information (e.g., spot prices for water, annual profits from agriculture) will reflect only contemporaneous weather shocks.
cropping and tillage practices, seed types, timing, and location of production. They also stimulate use of new irrigation technologies. In urban areas, they motivate new housing construction, elevation, and location away from harm. They channel more efficient use of water and its application to parks and other green areas to make urban settings more desirable with higher temperatures. These adaptive responses lower the costs of climate change.

To be effective, however, land markets must reflect multiple traders, and prices must be free to adjust. Where these conditions are not met, land market signals will be inhibited and market-driven adaptation will be reduced. Because public policy is driven by constituent demands, it may not be a remedy. The evidence of the National Flood Insurance Program and federal wildfire response illustrates how politically difficult it may be to adjust programs to be more adaptive. Constituent demands to subsidize existing land uses are important influences on politicians and agency officials.

These findings suggest that specific land markets dominated by flood or wildfire risk or those on the margin of agricultural production that rely upon crop insurance to be viable may be unlikely to provide the signals needed for adaptation to climate change. These areas have well-defined constituencies and political patrons. Hence they may be more subject to political intervention to set insurance rates, maintain subsidies, and respond disproportionately to the immediate past, rather than future hazards. Unfortunately, these are precisely the areas where adaptation is most needed to prepare for and reduce the costs of climate change. More generally, land markets that are less spatially and temporally tied to specific weather-related events and constituencies may be more active in generating adaptation signals. Their broader economic base, more diverse populations, and multiple options for adaptation likely makes them more flexible in responding to the costs and opportunities generated by climate change. These markets
are less apt to be as constrained by policy interventions. Beyond land markets, other markets, such as those for energy, can also provide adaptive responses if allowed to respond to market signals generated by carbon taxes or the trading of pollution permits. These adaptations can include new technologies to reduce greenhouse gas emissions in electricity generation, stimulated by higher input prices that better reflect the social costs of carbon (Mantripragada, 2017). These potential market adjustments as well have faced considerable political resistance.

All in all, markets can provide critical information about the unfolding costs of climate change and at the same time, generate incentives for adjustments that can mitigate those costs. There is considerable empirical evidence to support these observations in agricultural, urban, and coastal land markets. Energy markets could play a similar role. Key for markets will be flexibility in responding to and pricing new information. Because price adjustments have distributional effects, there is an incentive for affected constituencies to mobilize for political intervention. Accordingly, the socially-valuable adaptive responses encouraged by markets depends upon an understanding of their role and support for them. Regulatory restrictions on behalf of particular interests can have broad negative effects by impeding market processes.

References

Coastal Protection and Restoration Authority of Louisiana (2017), *Louisiana's Comprehensive Master Plan for a Sustainable Coast*, State of Louisiana

The Data Center (2017), *The Coastal Index: Tracking development of the water management cluster in Southeast Louisiana*, June.

Seo, N. and R. Mendelsohn. 2008c. "Climate Change Impacts on Latin American Farmland Values: The Role of Farm Type" Revista de Economia e Agronegocio 6: 159-176.

